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We consider the deterministic escape dynamics of a chain of coupled oscillators under microcanonical
conditions from a metastable state over a cubic potential barrier. The underlying dynamics is conservative and
noise free. We introduce a two-dimensional chain model and assume that neighboring units are coupled by
Morse springs. It is found that, starting from a homogeneous lattice state, due to the nonlinearity of the external
potential the system self-promotes an instability of its initial preparation and initiates complex lattice dynamics
leading to the formation of localized large amplitude breathers, evolving in the direction of barrier crossing,
accompanied by global oscillations of the chain transverse to the barrier. A few chain units accumulate locally
sufficient energy to cross the barrier. Eventually the metastable state is left and either these particles dissociate
or pull the remaining chain over the barrier. We show this escape for both linear rodlike and coil-like configu-
rations of the chain in two dimensions.
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I. INTRODUCTION

The problem of escape from metastable states is omni-
present in diverse scientific areas ranging from chemical ki-
netics �1�, diffusion in solids �2�, nucleation �3� to electrical
transport �4�, to name only a few. Theoretical models de-
scribing escape in theses systems widely exploit that the bar-
rier crossing can be well described by the Brownian motion
of a reaction coordinate in a potential well, as proposed by
Kramers in the 1940s �5,6�. There it is implied that the sys-
tem is in contact with an external heat bath serving as a
permanent source of energy, causing dissipation and local
energy fluctuations which successfully enable the escapes.
These models with thermally activated barrier crossings were
and are consecutively in the focus of numerous important
studies �7–9�. Many generalizations of Kramers escape
theory in overdamped and underdamped versions have been
widely exploited �7�. Starting from one-dimensional models
the theory of thermally activated escape has been generalized
to systems with many degrees of freedom; the first works
date back to the late 1960s �9�, for evolutionary processes
�10�, and particularly as well in the biophysical context such
as the transport of long and flexible polymers across mem-
branes and DNA electrophoresis �11–16�.

Less intensely the noise-free microcanonical situation has
been studied, where the system cannot feed on an external
energy source but rather a fixed amount of energy must suf-
fice to perform a barrier crossing. Such deterministic process
of a one-dimensional coupled oscillator chain has been pre-
sented as a robust—and purely self-organized—barrier cross-
ing mechanism �17,18�. The absolutely necessary ingredients
in the physics of these deterministic escapes are nonlinear
potentials wherein the chain moves and the discreteness of
the chain units. Both avert the chain to relax to states with
equipartition of energy among its constituents. In contrast
they allow for localization of a sufficient amount of energy
on a few oscillators forming a critical state. Gathering over-
critical energy these few units pull the whole chain across the
barrier �17,18�. Possibly, they dissociate from the chain car-
rying their energy away.

Thus, providing only a small amount of energy initially
homogeneously to the system, discreteness and nonlinearity
conspire into producing strongly localized lattice states, en-
abling the system to pass critical equilibrium configurations,
so-called transition states �19�. These intrinsic localized
modes, also referred to as discrete breathers, have become
more and more of interest in a variety of physical systems in
recent years �20–29�.

As an extension to the one-dimensional chain system
�17,18� we introduce a two-dimensional chain model with
pairwise nonlinear Morse interaction and study the influence
of the additional degree of freedom on the self-organized
escape process. In contrast to the previous study taking into
account solely motion in the transition direction, this time
motion is also allowed transverse to the barrier along the
well of the external potential. In consequence, in addition to
the formation of localized large amplitude breathers, with
amplitudes evolving in transition direction, global oscilla-
tions of the chain transverse to the barrier are observed.
Eventually a few chain links accumulate locally sufficient
energy to cross the barrier. This mechanism is shown to take
place for both linear rodlike and for coil-like configurations
of the chain in two dimensions �2D�.

In the following section we show details of this determin-
istic escape. We introduce the two-dimensional coupled os-
cillator chain model and discuss in Sec. III the modulational
instability being responsible for localization of energy in the
chain. In Sec. IV we pay special interest to the formation of
acoustic modes transverse to the direction of barrier crossing
and their influence on the escape process is studied. Related
to the latter we present in Sec. V the critical chain configu-
rations referred to as the transition states. We proceed in Sec.
VI by examining the parameter dependence of the escape
statistics of the oscillator chain. To conclude we summarize
our results.

II. TWO-DIMENSIONAL COUPLED OSCILLATOR CHAIN
MODEL

Our study treats a spring mass chain model. The chain
consists of N oscillators—also referred to as units—which
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are pairwise connected through nonlinear springs. The mo-
tion of these units takes place in the x-y plane. We denote by
qxn the displacement of the nth oscillator in the x direction
also referred to as the transition coordinate while in the trans-
verse y-direction displacements from the rest position are
denoted by qyn. The local on-site potential U reads as

U�qxn,qyn� =
m�0

2

2
qxn

2 −
a

3
qxn

3 , �1�

with n=1, . . . ,N. It obeys a cubic nonlinearity in one space
direction and is flat in the transverse one, hence the potential
landscape has the shape of an eaves gutter, shown in Figs. 1
and 2. The potential possesses a metastable equilibrium at
qx

min=0, corresponding to the rest energy Emin=0 and the
maximum is located at qx

max=m�0
2 /a with energy Emax

��E=m3�0
6 / �6a2�. Thus, in order for units to escape from

the potential well of depth �E over the energy barrier and
subsequently into the range qx�qx

max a sufficient amount of
energy must be supplied.

We assume a nonlinear interaction potential of Morse type
between adjacent entities of the chain

UM�rn+1,n� = D0�1 − e−d�rn+1,n−l��2, �2�

with depth D0, range parameter d, l the equilibrium distance
of the oscillators �also referred to as bond length�, and rn+1,n
the Euclidean distance of two neighboring oscillators,

rn+1,n = ��qxn+1 − qxn�2 + �qyn+1 − qyn�2, �3�

with n=1, . . . ,N−1.
The Hamiltonian of the two-dimensional chain model

reads as

H = �
n=1

N � pxn
2

2m
+

pyn
2

2m
+ U�qxn,qyn�	 + �

n=1

N−1

UM�rn+1,n� . �4�

From that Hamiltonian we derive the Hamilton equations
q̇xn=�H /�pxn and ṗxn=−�H /�qxn for the canonically conju-
gated variables in the x direction and accordingly in the y
direction. By rescaling space q̃=dq, conjugated momentum
p̃=dp / �m�0� and time t̃=�0t, furthermore introducing ã
=a / �dm�0

2� and �=2D0d2 / �m�0
2� and neglecting in the fol-

lowing the tilde in our notation we pass to dimensionless
variables.

a is called the anharmonicity parameter determining the
ratio of nonlinear and linear force terms associated with the

local on-site potential. The now dimensionless energy is Ẽ
=d2 / �m�0

2�E. The value of the barrier energy is thus

�E =
1

6a2 . �5�

For further investigations we introduce the important in-
trinsic length scale

s = qx
max − qx

min =
1

a
. �6�

The dynamics of the chain will be crucially affected by the
ratio l /s, i.e., the ratio of the bond length and the intrinsic

length scale s of the system. Small ratios cause coil-like
chain configurations, while rodlike states appear for ratios of
the order of one or above. Note that in the limit of vanishing
a the barrier disappears and the intrinsic length scale di-
verges.

The equations of motion derived from the Hamiltonian �4�
read as

(a)

(b)

(c)

FIG. 1. Coil-like structures, l /s�1. Snap shots of the dynamics
illustrating the formation of localized structures with a subsequent
barrier crossing event in the limit of weak coupling and short bond
length, for one realization of initial conditions. The initial condi-
tions are qx0=0.065 and �qx=0.001, yielding E0 /�E=0.248. The
remaining parameter values are a=5, �=0.15, l /s=0.05, and N=9.
�a� Snap shot taken at time t=0, initially virtually flat state. �b� Snap
shot taken at time t=210, the chain has coiled and a localized state
in the x direction has formed. �c� Snap shot taken at time t=655,
one unit has overcome the barrier level. Subsequently this unit es-
capes while the remaining oscillators stay captured inside the po-
tential well �not shown here�. The solid lines in the x-y plane des-
ignate the position of the potential’s minimum and maximum.
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q̈xn = − qxn + a qxn
2 − ��1 − e−�rn+1,n−l��e−�rn+1,n−l�qxn − qxn+1

rn+1,n

− ��1 − e−�rn,n−1−l��e−�rn,n−1−l�qxn − qxn−1

rn,n−1
, �7�

q̈yn = − ��1 − e−�rn+1,n−l��e−�rn+1,n−l�qyn − qyn+1

rn+1,n

− ��1 − e−�rn,n−1−l��e−�rn,n−1−l�qyn − qyn−1

rn,n−1
, �8�

for n=2, . . . ,N−1. We impose open boundary conditions.
Hence for n=1 �n=N� the coupling force to the left-hand
�right-hand� neighbor vanishes. For our studies we fix the
parameter value of the local on-site potential by setting a
=5.

Focusing our interest on a flat initial state as sketched in
the panel �a� of Figs. 1 and 2, small perturbations on the
corresponding plane elongation with amplitude qx0 are in-
cluded taking random initial amplitudes which are uniformly
distributed in an interval 
qxn�0�−qx0
��qx.

The mean values of qx0 are taken in such a way that the
average excitation energy of a single oscillator, E0, is small
compared to the depth, �E, of the potential well. Due to the
choice of sufficiently small displacements �qx the initial lat-
tice state, qxn�0�=qx0+�qxn, is close to an almost homoge-
neous state and yet sufficiently disturbed that there result
small but nonvanishing initial interaction terms. Thus an en-
ergy exchange between the coupled units is entailed. The
initial momenta �pxn�0��=0 are set zero. The initial ampli-
tudes in the transverse direction are qyn�0�=nl and the mo-
menta �pyn�0��=0 are zero, implying the conservation of the
center of mass in the y direction.

If in the beginning the energy is virtually equally shared
among all units in the chain, expressed by a homogeneous
elongation of the whole chain in the transition direction as
shown in the panel �a� of Figs. 1 and 2, the escape scenario is
the following: After a certain time has evolved, the uniform
state is disturbed and energy gets localized �panel �b� in Figs.
1 and 2, each showing a snap shot of a typical amplitude
dynamics for two different parameter sets, for details see the
captions�. Eventually at least one unit possesses enough en-
ergy to overcome the barrier �panel �c� in Figs. 1 and 2�.
Whether a cascade of barrier crossings is initiated depends
on the bond length as well as on the value of the coupling
strength. In the limit of l /s→0—that means small bonds
compared to the width of the local potential—and a weak
coupling �corresponding to the snap shots presented in Fig.
1� the chain tends to fragment. Whereas for longer bonds
l /s�1 and a stronger coupling �see Fig. 2, notice the change
of the y scale compared to the previous figure�, the unit that
has overcome the barrier, pulls its neighbors over the latter.
Consequently, concerted escape of the entire chain from the
potential valley becomes possible.

The amplitudes of escaped units are kept fixed after pass-
ing a threshold far behind the barrier, which we chose as
qx

thresh=100qx
max.

Numerical schemes. We have numerically integrated the

set of Eqs. �7� and �8� with an explicit fourth-order symplec-
tic integrator scheme �30�. The accuracy of the calculation
was checked by continuously monitoring numerically the
conservation of the total energy with a precision of at least

�E�t�−E�0�� /E�0�
=10−9. We tested also alternative numeri-

(a)

(b)

(c)

FIG. 2. Rod-like structures, l /s�1. Snap shots of the dynamics
illustrating the formation of localized structures with a subsequent
barrier crossing event, for one realization of initial conditions. The
initial conditions are qx0=0.09 and �qx=0.001, yielding E0 /�E
=0.425. The remaining parameter values are a=5, �=0.9, l /s
=1.25, and N=10. �a� Snap shot taken at time t=0, initially virtually
flat state. �b� Snap shot taken at time t=235, a short wavelength
amplitude pattern �� mode� in the x direction has appeared. �c�
Snap shot taken at time t=245, one unit has overcome the barrier
level. Subsequently the whole chain escapes �not shown here�. The
solid lines in the x-y plane designate the position of the potential’s
minimum and maximum.
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cal integration schemes, such as an explicit Runge-Kutta
scheme of fourth order and an implicit Runge-Kutta scheme.
In all cases we found identical results. More precisely, start-
ing with the same initial conditions �and always imposing the
same boundary conditions� and using the above-mentioned
integration schemes, for all of these numerical schemes we
reproduced over a time interval of 106 time units identical
results for the trajectories.

Moreover, we confirmed that our numerical results are
insensitive to the step size of the employed integrator. We
emphasize that even in cases when the amplitudes of some of
the oscillators grow significantly �i.e., the formation of large
amplitude breathers� the numerical accuracy was assured by
monitoring the conservation of energy. Because the explicit
symplectic integration scheme yields results identical to
those obtained with a numerically stable implicit integrator
we conclude that our results are numerically stable.

In addition the preservation of the total momentum along
the transverse direction, where the system is translation in-
variant, is also guaranteed. The following sections deal with
the main stages of the coupled dynamics culminating in the
self-organized deterministic escape process.

III. MODULATIONAL INSTABILITY

It is well know that the formation of localized excitations
in nonlinear systems can be caused by modulational instabil-
ity �27–29,31,32�. This mechanism initiates an instability of
a plane wave when small perturbations of nonvanishing
wave numbers are imposed.

We underline that we focus our interest on a virtually flat
initial state. Then, the growth rate of perturbations with wave
number K� �−� ,�� in the limit of large bond length l
	O�s�, l
�qx, is given by

� 
��
��qx�2

l2

10a2qx0
2

3
sin2�K

2
	 + O��̃� . �9�

A derivation of Eq. �9� is presented in the Appendix.
In the weakly nonlinear regime—i.e., E0
qx0

2 /2—we can
rewrite Eq. �9� in a more convenient form involving the ratio
of the average excitation energy and the barrier height

� 
��
��qx�2

l2

10E0

9�E
sin2�K

2
	 . �10�

According to this equation all perturbing modes taken from
the first Brillouin zone are unstable. The maximum growth
rate is found at 
Kmax
=�. Indeed the structures presented in
the panel �b� of Fig. 2 and in the panel �b� of Fig. 3 have this
characteristic, that is there arises an array consisting of nu-
merous breathers. Moreover, from Eq. �9� we can infer that
the growth rate of small amplitude perturbations shrinks with
enlarging bond length l. That means it takes longer times for
the creation of localized structures. The other way around,
the rate grows with increasing amplitude of the initial elon-
gation. We note that such short wavelength localized struc-
tures experience no modification when the number of chain
units, N, is varied.

With concern to the limit of short bond lengths l→0,
where �9� does not apply, we observe the formation of a long

wavelength �
Kmax
��� localized structure similar to the one
that has been observed in �17,18�. Provided that the size of
the chain is large compared to the wavelength of the local-
ized structures, i.e., N�2� /Kmax, these structures—and in
particular their wavelength—are not affected when changing
the number of chain units N. The formation of an array of
localized solutions �large-amplitude breathers� in the x direc-
tion is illustrated in the panel �a� of Fig. 3. We remark that an
increase of the coupling strength enlarges the typical wave-
length of the structure �18�.

Note, that, despite the presence of a nonlinear intersite
interaction, the situation must be distinguished from the
well-known Fermi-Past-Ulam model �33�. In our model the
instability of the initial lattice state is solely governed by the
nonlinearity of the on-site potential.

IV. ENERGY REDISTRIBUTION PROCESS

The process of modulational instability governs the dy-
namics of the system at an early instant of time. Later on, the

(a)

(b)

FIG. 3. Formation of localized structures. Depicted are the spa-
tiotemporal evolutions of the amplitudes �qxn� for each one realiza-
tion of initial conditions. �a� l /s�1, formation of an array of local-
ized solutions �large-amplitude breathers�. The initial conditions are
qx0=0.04 and �qx=0.001, yielding E0 /�E=0.104. The remaining
parameter values are a=5, �=0.15, l /s=0.05, and N=100. �b� l /s
�1, formation of an array consisting of numerous breathers. The
initial conditions are qx0=−0.05 and �qx=0.001, yielding E0 /�E
=0.219. The remaining parameter values are a=5, �=0.5, l /s=2.0,
and N=100.

FUGMANN et al. PHYSICAL REVIEW E 77, 061135 �2008�

061135-4



influence of the—compared to a purely one-dimensional os-
cillator model—second, transverse, degree of freedom is ex-
pected to crucially affect the dynamical processes of the
coupled oscillator chain.

Interestingly, we observe that in the cases of very short
bond lengths l /s�1 and bond lengths fulfilling l /s�1 the
structure, which is formed by modulational instability, per-
sists for very long times, whereas it disappears rather fast for
bond length values in between.

Such decrease of the amplitudes of the localized struc-
tures in the x direction comes along with the excitation of
motions in the transverse degree of freedom. As one measure
for the energy content in the x and the y direction the respec-
tive kinetic energy can be taken. Initially the mean of the
kinetic energy of the x motion is Ekin

x =0.5Etotal, whereas
Ekin

y =0. Induced by the breather formation in the x direction
an enhanced interaction of neighboring oscillators is caused
and since the interaction force couples the motion in the x
and in the y motion an energy transfer is initiated.

We assume that the system has reached a state of equipar-
tition if Ekin=0.25Etotal in both the x and the y direction,
respectively. In Fig. 4 we depict the mean times of attain-
ment of the equipartitioned state as a function of the bond
length for different values of the coupling strength. Averages
are performed over 200 realizations of random initial condi-
tions. Apparently this time shrinks with increasing coupling
strength. We underline, that the energy transfer described
above is a purely nonlinear effect. We never observed a com-
plete back transfer of energy from the y to the x motion. In
contrast, in �34� resonant regimes of periodic energy transfer
in a two-dimensional one-particle system are reported. It is
still an open question, why there exist no such resonant re-
gions in the extended two-dimensional chain model.

For one realization of initial conditions the spatiotemporal
evolution of the amplitudes �qyn�t�� is shown in Fig. 5. The
parameter values are taken as l /s=1.25 and �=0.9. The av-
erage excitation energy of a single unit is E0=0.219�E. We
observe a breathinglike behavior, the chain contracts and re-

laxes along its axis periodically in time. �This behavior of
global oscillations of the chain as a whole along the trans-
verse direction should not be confused with the large-
amplitude breathers evolving in the transition coordinate di-
rection involving fairly strong energy localization at certain
sites.� For the chosen set of parameters we obtain a period of
about T=216. We find that the frequency of the global oscil-
lation increases with growing coupling strength according to

���. Furthermore, we find that the stronger the coupling
strength the faster the higher-energy modes are excited and
thus—in good agreement with the results obtained above—
the relaxation process is accelerated.

V. TRANSITION STATES

Whether an oscillator involved in a large amplitude
breather state is able to escape from the region of bounded
motion inside the potential well or is held back depends on
the corresponding amplitude pattern as well as on the cou-
pling strength �. The associated critical chain
configuration—called the transition state—is determined by
�q̇xn�= �q̇yn�=0 and �ṗxn�= �ṗyn�=0. Hence we look for an
appropriate solution of the corresponding stationary system
which represents a force-free configuration yielding a first-
order saddle point in configuration space.

In order to calculate the transition state we apply a mul-
tidimensional root finding algorithm using the Newton-
Raphson method. For an identified transition state we com-
pute the eigenvalues of the corresponding Jacobian assuring
that we indeed found a first-order saddle point on the energy
surface.

In the following we consider two scenarios: The peak of
the localized amplitude profile of the critical configuration is
situated either at one free end of the chain �referred to as
boundary critical localized mode—BCLM�, or somewhere in
between the free ends �referred to as CLM�.

We first discuss the stationary solutions obtained for the
CLMs. Figure 6 shows the amplitude profiles for two differ-

0 0.5 1 1.5 2 2.5

10
3

10
4

l/s

T
eq

u
κ = 0.25
κ = 0.50
κ = 0.90

FIG. 4. Mean time Tequ in which an equipartition of energy is
reached as a function of the bond length l. Values of the coupling
strength as depicted in the legend. The initial conditions are qx0=
−0.04 and �qx=0.001, yielding E0 /�E=0.136. The remaining pa-
rameter values are a=5 and N=100.

FIG. 5. Global oscillations in the y direction. Shown is the spa-
tiotemporal evolution of the amplitudes �qyn� for one realization of
initial conditions. The amplitude values are shifted with respect to
their initial values nl. The initial conditions are qx0=−0.05 and
�qx=0.001, yielding E0 /�E=0.219. The remaining parameter val-
ues are a=5, �=0.9, l /s=1.25, and N=100.
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ent values of l and a fixed coupling strength �=0.8. We must
distinguish two situations: First, l�s, represented by the
critical profile with solid lines in Fig. 6. This profile re-
sembles a thin needle with the central unit situated beyond
the barrier. Here we must remark, that in general, the smaller
the bond length l the larger is the extension of the critical
localized mode along the x direction and the more oscillators
are elongated from the potential’s minimum. In contrast, for
l�s, the central oscillator is always situated at the barrier,
while its neighbors are arranged in such a way that there
remains no stress arising from the bonds. We underline that
the ends of the chain are free and there act thus no restoring
forces. Hence, in order to reduce the stress arising from the
elongation of the central oscillator over the barrier, its neigh-
bors can be replaced force free along the y axis. Furthermore,
due to the strong degree of localization the obtained struc-
tures remain the same when increasing the number of oscil-
lators in the chain. We remark that the alignment of the units
along the potential minimum situated at qx

min=0 is com-
pletely arbitrary, as long as next neighbors keep their equi-
librium distance l. In particular, completely coiled configu-
rations can be critical transition states, too.

For the BCLMs, the qualitative dependencies on the sys-
tem’s parameters � and l remain—compared to the situation
when the critical peak is formed between the ends—the
same. But—since the oscillator beyond the barrier is now
connected to only one neighbor inside the potential well and
thus the acting back-pulling forces are smaller—the force-
free critical state is less elongated.

For a critical chain configuration �q̂c� the activation en-
ergy is determined by the following functional:

Eact = �
n=1

N

U�q̂xn, q̂yn� + �
n=1

N−1

UM�r̂n+1,n� . �11�

Concerning the dependence of the activation energy on the
bond length, we observe a decay of Eact with enlarging bond
length. In the limit l→s its value approaches Eact /�E=1. We
remark that in the case of l�s we always find a critical
stationary solution with activation energy Eact=�E.

Provided that l�s, the activation energy Eact grows with
an increasing value of the coupling strength. The growth is
the stronger the smaller is l.

In the case of boundary critical localized modes the acti-
vation energies are remarkably lower compared to transition
states with a peak somewhere in between the loose ends. A
detailed analysis of the energetic contributions to the activa-
tion energy reveals that the major part of Eact is stored as
deformation energy of the springs. Since a BCLM contains
fewer stretched springs, the value of activation energy is
lower.

We conclude that the process of barrier crossing of the
chain is not only influenced by the amount of energy pro-
vided to the system. It also depends on the ratio of different
length scales, since the geometry plays a crucial role for
motions in a two-dimensional potential landscape. Thus, the
rate of escape will be crucially affected by the choice of
parameters.

VI. INFLUENCE OF THE PARAMETERS ON THE
ESCAPE STATISTICS

In order to locate a parameter region where escape hap-
pens as fast as possible we study the escape statistics as a
function of the coupling strength � and the bond length l. We
define the escape time of a chain as the moment at which the
last escaped unit �the escape time of a single unit is denoted
by tesc� passes through the value qx

thresh=100qx
max beyond the

barrier. Performing averages of the escape time of a chain
over hundreds of realizations of random initial conditions we
compute the mean escape time Tesc. We fix the number of
units to N=100.

In the following we focus our interest on parameter re-
gions yielding an escape of the entire chain.

In order to illustrate the escape process, we depict in Fig.
7 the escape times tesc versus the position of the escaping unit
when the corresponding unit passes qx

thresh. First, one unit
moves directly beyond the barrier �since the underlying dy-
namics is irregular for different realizations of initial condi-
tions the incident escape can happen at an arbitrary location
in the chain� and in consequence adjacent units are subjected
to pulling forces and a cascade of escapes is initiated in a
relatively short time interval.

A. Coupling strength influence on the escape process

Our simulation time was set to tsim=104, corresponding to
more than 1500 of linear ground-state oscillations. We cal-
culate the fraction of positive escape events of the entire
chain in relation to the number of simulations �200 realiza-
tions of initial conditions�. Since not all simulations lead to

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

y

l/s=0.75
l/s=1.25

FIG. 6. Amplitude profiles of the CLM, centered at y=0 for two
different bond lengths: l /s=0.75 �solid line with square symbols�
and l /s=1.25 �dashed line with circles�. For better illustration we
depict only a segment of the chain, containing 5–7 units. The pa-
rameter values are a=5, N=100, and �=0.8. The alignment of the
units along the potential minimum situated at qx

min=0 is completely
arbitrary, as long as next neighbors keep their equilibrium distance
l. In particular, completely coiled configurations can be critical tran-
sition states.
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positive escape events during tsim the calculation of a mean
escape time alone is not suitable.

In Fig. 8 we present the fraction of successful exits of the
entire chain for two different bond lengths as a function of
the coupling strength �. The values of the bond lengths are
chosen in such way that one is smaller and one is larger than
s. For �=0.45 we observe the first rare events of escape of
the complete oscillator chain. The fraction of successful es-
cape events of the entire chain further increases with en-
hanced coupling strength.

Whereas for the larger bond length at �=0.75 the curve
saturates to 1—i.e., all initial preparations lead to an escape
of the whole chain—the curve for the smaller bond length

reaches there a maximum of 0.835. With further increasing
coupling strength the latter curve descends reaching a value
of 0.345 at �=1.5.

The different shape of the curves can be explained by the
dependence of the activation energy on the value of the cou-
pling strength for l�s. Here the effective potential barrier
that must be overcome during the escape process grows with
�. As a result we observe a drastic reduction of the success-
ful exit events for shorter bond lengths.

B. Dependence of the mean escape time on the bond length

We also study the influence of the bond length on the
mean escape time of the oscillator chain. We fix the coupling
strength to �=0.9, guaranteeing an exit of the entire chain
without fragmentation.

The results are shown in Fig. 9. For small bond lengths up
to l /s=1 the curve drops and at l /s=1.1 a minimum is
reached. With further increase of the bond length the mean
escape time slightly increases.

The rise of the curve for enlarging bond length can be
explained with the smaller growth rates of the localized
structures created during the process of modulational insta-
bility. The effective interaction is weaker. Thus the process
of energy localization is slower and thereby all subsequent
�exchange� processes induced by the modulational instability
are slowed down, too.

VII. DISTRIBUTION OF ESCAPE TIMES

In addition we present the distribution of the escape times
for a fixed set of parameter values. Figure 10 shows the
distributions obtained from 2�104 simulations with differ-
ent realizations of initial conditions. Interestingly the distri-
bution has periodically recurring peaks. For better illustra-
tion an enlargement is presented in the inset of Fig. 10. Let
us remind that the chain breathes along its axis with a fre-
quency of 
=4.64�10−3 for the chosen set of parameter
values �cf. Fig. 5�, corresponding to a period of about T
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FIG. 7. Illustration of the escape process for one realization of
initial conditions. The individual escape times tesc versus the y po-
sition when the corresponding unit passes the threshold value qx

thresh

far behind the barrier. The position of the unit which overcomes the
barrier first is denoted by yc, all other positions are shifted by this
value. The initial conditions are qx0=−0.05 and �qx=0.001, yield-
ing E0 /�E=0.219. The parameter values are a=5, �=0.9, l /s
=1.25, and N=100.
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FIG. 8. Fraction of successful exits of the entire chain as a
function of the coupling strength �. The value of the bond length l
is given in the legend. The initial conditions are qx0=−0.05 and
�qx=0.001, yielding E0 /�E=0.219. The remaining parameter val-
ues are a=5 and N=100.
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FIG. 9. Mean escape time as a function of the bond length l. The
initial conditions are: qx0=−0.05 and �qx=0.001, yielding E0 /�E
=0.219. The remaining parameter values are a=5, �=0.9, and N
=100.
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=216. Each time the chain is contracted there are favorable
conditions to pass the transition state which for itself in-
volves a narrow configuration in the y direction, cf. Fig. 6. A
Fourier analysis of the escape time distribution confirms that
the period between two peak appearances, determined as T
=216�5, coincides with the above noted breathing period of
the chain T=216.

Concerning the dependence of the mean escape time on
the average excitation energy, we observe a rather strong
decay of Tesc with growing ratio E0 /�E in the low-energy
region. With further increasing E0 this decay weakens.

VIII. SUMMARY

In the present work we have considered the conservative
and deterministic escape dynamics of a chain of coupled os-
cillators. Attention has been paid to the barrier crossing of
the chain and foregoing processes leading to it when the
chain is initially in a flat state near the bottom of a meta-
stable potential.

To be precise, we have considered a two-dimensional
spring-mass chain model. Anharmonicity enters our model in
a twofold way, first via the expression for the bond length
between two adjacent units and second, by the assumption
that the oscillators interact via Morse coupling. Each oscil-
lator evolves in a cubic single well potential determining so
the transition direction. Initially the energy was homoge-
neously shared among the units and there was no excitation
of the transverse motion.

It has been shown that, starting from this homogeneous
lattice state, the system self-promotes an instability of its
initial preparation. More precisely, for those lattice states that
are modulationally unstable small perturbations grow in the
course of time leading to energy localization. In the limiting
case of large bond length an analytical estimate for the
growth rates of small perturbations of the initial state at an
early stage of the dynamics has been presented. The modu-
lational instability of the chain state initiates the appearance
of complex lattice dynamics entailing the formation of local-
ized large amplitude breathers in the transition direction on
the one hand, and global oscillations in transverse direction
on the other hand. Concerning the appearance of large am-

plitude excitations and the subsequent exit of the chain the
critical chain configurations have been presented. We have
obtained the surprising result that in the limit of long bonds
the activation energy becomes independent of the coupling
strength and is equal to the net barrier height.

Furthermore, we pay special interest to the process of
energy redistribution due to the excitation of transverse lat-
tice modes. It has turned out that with enhanced interaction
strength between the units of the chain the energy flow to the
perpendicular motion is accelerated. As a result of these in-
vestigations an optimal parameter set offering a fast escape
has been derived.

We have presented the distribution of the escape times for
a set of parameter values. Recurring peaks of higher prob-
ability of escape have been observed. We have linked these
peaks to time-periodic structural changes of the chain.

To summarize, even such a complex deterministic system
equipped with only a comparatively low amount of energy
proved to be able to perform large amplitude excitations with
subsequent passing of the transition state. Thus, with respect
to the results obtained in �17,18� for the one-dimensional
case of harmonically interacting units in the present study we
have presented a more elaborate version of the existing con-
cept of deterministic escape processes and thereby offer a
wide field of possible applications in physics and biology.
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APPENDIX: MODULATIONAL INSTABILITY

For small derivations from the units equilibrium positions
the Morse potential can be represented in a harmonic ap-
proximation.

According to the initial chain preparation described in
Sec. II we look for perturbations of an initially flat mode,
i.e., kx=0. We set qyn�t�=nl since we can discard—in a rough
approximation—the motion in the y direction for the onset of
modulational instability.

Supposing �qxn+1,n= 
qxn+1−qxn
� l—i.e., deviations from
the rest positions remain small compared to the equilibrium
distance of neighboring units—we expand the square root in
�3� as

rn+1,n 
 �l2 + �qxn+1,n
2 
 l +

�qxn+1,n
2

2l
. �A1�

Eventually we have an equation with a purely nonlinear cou-
pling term,

q̈xn = − qxn + aqxn
2 +

�

2l2 ��qxn+1 − qxn�3 − �qxn − qxn−1�3� .

�A2�

At a very early instant of the dynamics we can consider
the small interactions by supposing the following ansatz tak-
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FIG. 10. Distribution of the escape times. The parameter values
are a=5, �=0.9, l /s=1.25, and N=100. Initial conditions as in Fig.
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ing into account the nonvanishing random perturbations al-
ready present in the initial preparation:

�qxn�1 − qxn�3 = �qxn�1 − qxn�2�qxn�1 − qxn�

� �2�qx�2�qxn�1 − qxn� , �A3�

with �qx as the amplitudes of small random perturbations as
introduced in Sec. II. We obtain

q̈xn = − qxn + aqxn
2 + �̃�qxn+1 + qxn−1 − 2qxn� . �A4�

This equation describes a harmonically coupled chain of os-
cillators with an effective coupling strength

�̃ = 2���qx�2/l2 � � �A5�

between adjacent units.
To analyze the nonlinear character of the solutions of Eq.

�A4� a nonlinear discrete Schrödinger equation for the
slowly varying envelope solution, Qn�t�, has been derived in
�27,35�,

2iQ̇n + �̃�Qn+1 + Qn−1 − 2Qn� + �
Qn
2Qn = 0, �A6�

with the nonlinearity parameter �=10a2 /3. The stability of a
plane-wave solution of Eq. �A6� of the form

Qn�t� = Q0 exp�i�n� + c.c., �A7�

with �n=kxn−�t �kx is taken from the first Brillouin zone�—
i.e., kx� �−� ,��—can be investigated in the weakly nonlin-
ear regime by assuming small perturbations of the amplitude
Q0 and phase �n that have the form of sinusoidal modulations

with wave number K and frequency �. One then finds for the
perturbational wave the following dispersion relation
�27,35�:

�� − �̃ sin�K�sin�kx��2 = 2�̃ sin2�K

2
	cos�kx�

��2�̃ sin2�K

2
	cos�kx� − �Q0

2� .

�A8�

Stability of the perturbations necessitates that � is real. Con-
versely, if the right-hand side of Eq. �A8� is negative the
perturbation grows exponentially with a rate

� = �2�̃ sin2�K

2
	cos�kx���Q0

2 − 2�̃ sin2�K

2
	cos�kx���1/2

.

�A9�

Taking into account the weak effective coupling ��̃��
�O�1��, furthermore setting kx=0, we obtain the following
growth rate � for perturbations with wave vector Q of the
initial flat mode:

� =��̃
20a2Q0

2

3
sin2�K

2
	 + O��̃� . �A10�

Note that the amplitude qx0 of the initial state of the system is
related to Q0 via qx0=2Q0.
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